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second level, but also long-range indirect interactions. At the same time we take into account the 
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agents. This approach helps us to identify systemically important elements which cannot be 

detected by classical centrality measures or other indices. The proposed method was used to 
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favorable investment conditions and positive business climate. 
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Introduction 

The financial crisis has reminded how important it is to look at the links and connections 

inside the financial system. We saw that major disruptions such as failure or a near failure of 

certain financial institutions rapidly spilled over to the whole system. In other words, there is a 

need to detect systemically important financial institutions or countries that require more careful 

investigations and observations. This issue has significant implications for macro-prudential 

surveillance, and hence for financial stability in terms of systemic risk identification. 

Pivotal agent identification recently has received particular attention in the context of the 

risk allocation problem. Existing studies use different approaches to identify key players in 

financial markets. Most of them are based on quantitative statistical analysis of indicators for 

each element or on the analysis of the sustainability of networks. 

The most traditional approach related to systemic importance assessment is an indicator-

based approach. It is usually based on the system of financial indicators, estimated by a regulator 

and relied on measuring the banks involvement in certain activities. Another common approach 

in the literature, which is focused on the evaluation of the contribution of financial institutions to 

cumulative systemic risk, is called a structural approach. It is based on the micro-founded, 

general equilibrium theoretical framework, which indicates that financial instability can arise 

either through systemic shocks, contagion after idiosyncratic shocks or through a combination of 

both. 

Another approach of estimating the degree of systemic risk is to apply a network theory. 

In that case a network can be represented as the system of nodes (financial institutions) and links 

(flows of capital) among them. For the purpose of measuring the degree of importance in 

networks many centrality indices were proposed.  

We use the network analysis, and try to take into consideration all the drawbacks of 

existing indices and centrality measures and to design a new method for assessing the 

significance of elements of financial systems based on the intensities of long-range interactions. 

In fact, our methodology is an attempt to improve the approach proposed in (Aleskerov et al., 

2014), which does not take into account long-range interactions between elements of the 

network. 

The paper is organized as follows. In Section 1, we present a detailed review of the 

literature related to different approaches of systemic risk assessment. In Section 2we emphasize 

the drawbacks of existing approaches and provide a small example to describe the basic idea of 

our methodology. In Section 3, we formally describe the proposed model and present more 
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complicated example. Finally, we demonstrate the empirical application of our model to the data 

of international lending activities of banks’ head offices of different countries.  

 

1. Literature review 

In this Section let us briefly review quantitative models of systemic risk assessment 

which have been proposed in the literature.  

In most contemporary studies, systemic risk is understood in two different but related 

ways. First, the "systemic risk contribution" is associated with a large and complex financial 

institutions which correspond to a negative externality of the risk for other economic agents. On 

the other hand, systemic risk is often understood as financial system risk. We follow the second 

idea which is the analogue of the assessment of the total risk measure, its composition and the 

development of systemic risk assessment for monitoring purposes. 

Systemic risk can be measured for markets as a whole or at the financial institutions level 

to identify systemically important elements. For both markets and institutions, these measures 

may be direct, using analytical models, or indirect, using indicators that are considered to relate 

to systemic risk.  

An example of the indirect measure for markets is an indicator-based approach, which 

usually used in cases when we do not have an exogenous measure of systemic risk and have to 

rely on expert judgments and priors to validate the model-based measures. For example, the 

(ECB, 2015), (IMF, 2015), (BCBS, 2013) proposed indicators for size, interconnectedness, and 

substitutability to measure the systemic importance of a financial institution. In (Thomson, 2009) 

the use of size and the four C’s (contagion, concentration, correlation, and conditions) as criteria 

to determine the systemic importance was p. Similarly, (Patro et al., 2013) proposed that stock 

return correlation is a useful indicator of systemic risk for markets as a whole: while holding the 

firm level probability of default constant, a higher correlation implies a higher joint probability 

of default for the system, such that correlation can serve as a useful indicator of systemic risk. 

There is also a considerable amount of literature that has investigated more complex 

models for systemic risk, so called structural approach. It develops the ideas of (Gray et al., 

2008) who propose the use of contingent claims analysis to evaluate the sensitivity of an 

economic system's balance sheets to external shock. Similarly, a direct model-based measure of 

the systemic importance was presented in (Segoviano and Goodhart, 2009), in which joint 

probability of distress as well as a banking stability index for the financial sector was estimated 

and in (Adrian, Brunnermeier, 2009) with CoVaR measure. Other examples of works under this 
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approach include (Allenspach and Monnin, 2006), (Goodhart et al. 2006), (Hartmann et al., 

2005), (Huang et al., 2009), (Zhou, 2010), (Chan-Lau, 2010). 

As we have mentioned in previous Sections, there is a third strand of the literature 

investigating systemic risk allocation. There is a broad range of works employing the network 

theory. Network analysis of economic and financial structures has already been applied in the 

context of stock ownership networks (Garlaschelli et al., 2005), emergence of contagion and 

systemic risk in the interbank market and in payment systems (Angelini et al., 1996; Furfine, 

2003; Iori et al., 2006) and also in terms of how interconnected a financial system can be at the 

national and international level (Allen, Babus, 2009; Allen, Gale, 2000). We extend this part of 

literature with our current study. 

For the purposes of measuring the degree of importance in networks many centrality 

indices were proposed (Bonacich, 1972), (Barrat et al., 2004), (von Peter, 2007), (Newman, 

2010). The three most widely used centrality measures are degree, closeness, and betweenness 

(Freeman 1977, 1979). Some measures differ in their use of  undirected and directed graphs. 

Degree centrality refers to the number of ties a node has to other nodes. Nodes have 

higher centrality to the extent it can gain access to and/or influence over others. A central node 

occupies a structural position (network location) that serves as a source or a channel for larger 

volumes of information exchange or other resource transactions with other nodes. 

Degree centrality 𝐶𝑖
𝑑(𝑔)of node i in network g is calculated as 

𝐶𝑖
𝑑(𝑔) =

𝜂𝑖(𝑔)

𝑛−1
=

|𝑁𝑖(𝑔)|

𝑛−1
∈ [0, 1], 

where𝜂𝑖(𝑔)is the degree of i in adjacency matrix 𝑔 = [𝑔𝑖𝑗] and 𝑁𝑖(𝑔) is the  set of neighbors of i 

in g, n is the number of vertices. 

Degree centrality for a directed graph has one of two forms: in-degree centrality and out-

degree centrality. Accordingly, in-degree centrality is evaluated using the number of in-coming 

links to the node, and out-degree uses the number of out-going links from the node.  

For systemic risk analysis and risk allocation in lending activities weighted in-degree 

centrality (WInDeg) indicates the most active borrowers on the market. It is important to 

emphasize that this measure lacks information on the number of links of the neighbors of each 

borrower. Two borrowers can take the same amount of money, but if one borrower is connected 

to more lenders, the contagion effect from the failure of this borrower would be higher compared 

to the failure of the other borrower.  

Weighted out-degree centrality (WOutDeg)  indicates the most active lender, and for risk 

analysis represents  borrowers with the largest financial resources and attractive financial 

instruments to invest. As a previous measure, this one do not take into consideration information 
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about the number of links. Weighted degree centrality is simply the number of other nodes 

connected directly to a node taking into account the weights on the edges. It is an indicator of a 

lender's financial activity and shows the level of its involvement in all types of financial 

transactions. 

The value of weighted degree difference, which could be calculated as Weighted out-

degree centrality - weighted in-degree centrality, shows the aggregated role of a particular node 

in the system. As a result for systemic risk analysis, all elements could be divided into two 

groups: net creditors (when WInDeg>WOutDeg) or net borrower (WInDeg<WOutDeg). Low 

values of this measure in case of banking foreign claims analysis can be explained by two 

factors: attractive conditions for direct foreign investments or the realization of government 

financial assistance programs. In both cases, the incoming flow will be significantly higher than 

outgoing flows.  

Betweenness centrality show often the vertex is placed on the shortest path between any 

two nodes in the network. Betweenness centrality for node i is the sum of the proportions for all 

pairs of actors j and k, in which actor i is involved in a pair’s geodesic(s), i.e. 

𝐶𝑖
𝑏(𝑔) =∑

𝜎𝑗𝑘(𝑛𝑖)

𝜎𝑗𝑘
𝑗<𝑘

 

where𝜎𝑗𝑘(𝑛𝑖) is the number of geodesics between k and j containing 𝑖 ∉ {𝑘, 𝑗}, 𝜎𝑗𝑘 is the  total 

number of geodesics between k and j.  

In our work it will be constructed in a way that maximizes the total sum on the edges on 

the shortest path. In terms of loans it could be interpreted as a measure of how often the borrower 

is on the most popular capital transition channel (the path with the largest capital flow between 

any pairs of borrowers). 

The level of closeness shows how close the node is located to other nodes or how easy we 

can reach other nodes in the network from a particular one. It could be defined as the inverse of 

farness, which in turn is the sum of distances to all other nodes in undirected graph 

𝐶𝑖
𝐶(𝑔) =

1

∑ 𝑙𝑖𝑗(𝑔)𝑖≠𝑗
 

where𝑙𝑖𝑗(𝑔) is the  geodesic distance between i and j in g. 

Thus, the more central a node is the lower its total distance from all other nodes. Note 

that taking distances from or to all other nodes is irrelevant in undirected graphs, whereas in 

directed graphs distances to a node are considered a more meaningful measure of centrality.  

In our work it will be constructed in a way that maximizes total capital flow on the path 

and shows how easy it is to reach the particular node in a network from the other nodes. In terms 
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of loans it shows the most efficient financial intermediaries, which attract high volume of 

resources. 

Eigenvector centrality is a measure of the influence of a node in a network. It assigns 

relative scores to all nodes in the network based on the concept that connections to high-scoring 

nodes contribute more to the score of the node in question than equal connections to low-scoring 

nodes. The value is obtained by solving the linear system 𝜈 = 𝐴′𝜈, where v is the vector of the 

importance scores for i and adjacency matrix 𝐴 = [𝑎𝑖𝑗]. The solution is represented by the 

eigenvector corresponding to the eigenvalue 1. 

PageRank is a version of the eigenvector centrality measure. There are different versions 

of the measure. In one version, the value of a network node centrality is calculated by the 

following formula 

 𝑃𝑅(𝑖) = (1 − 𝛼) + 𝛼 ∙∑
𝑃𝑅(𝑗 → 𝑖)

|𝑁𝑖(𝑔)|
𝑗

 

where𝑃𝑅(𝑖) is the value of the node centrality i, αis so-called damping factor (usually set at 

0,85), 𝑃𝑅(𝑗 → 𝑖) is the value of the central node j, which has a direct link with the node i,𝑁𝑖(𝑔) 

is the number of links of a node j. In other words, PageRank for node i is determined by the 

PageRank of each node j, which has a direct link with the node i. 

Thus, we can see that some centrality measures are based on the number of links to other 

nodes with/without respect to their importance (e.g. degree, eigenvector measures). Other 

techniques consider how close each node is located to other nodes in terms of the distance (e.g., 

the closeness measure) or how many times it is on the shortest paths connecting different node-

pairs (e.g., the betweenness measure), etc. 

Other attempts to evaluate the degree of importance of elements in networks are based on 

simulation mechanism. For example, a method of firm dynamics simulations was developed by 

applying game theory to a stochastic agent model in order to analyze the uncertainty in the 

business environment (Ikeda et al, 2007), (Giovanetti, 2012). Also simulation procedure is 

widely used to assess the industrial transactions networks, property relations, and the dynamics 

of industrial and innovation clusters as well as modeling the financial risks in the interbank 

market and payment systems. 

In (Leonidov, Rumjanzev, 2013) the authors analyze the Russian interbank network 

structure based on such characteristics as borrowers and lenders distribution, assets and liabilities 

distribution and the relationship between the ant of claims with a number of counterparties. Their 

methodology of the analysis of systemic risk is based on a study of the consequences of default 

of one of the banks considered as a result of simulation of cascade defaults on interbank network 

similar to the process of contagion effect.  
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Many attempts of key nodes detection in networks came from cooperative game theory. 

In that case, the network is interpreted as a set of interacting individuals that contribute to a total 

productive value of the network and the problem is how to share generated value among them. In 

(Myerson, 1977) there was proposed a measure which is based on the Shapley-Shubik index 

(Shapley, Shubik, 1954) for communication games. The Myerson value is an allocation rule in 

the context of network games where the value of each individual depends on the value generated 

by the network with and without that individual. Several attempts to employ power indices to 

find systemically important financial institutions were accomplished (Tarashev et al, 2010), 

(Drehmann, Tarashev, 2011), (Garratt, 2012). Нowever, the above-described techniques do not 

fully consider the intensity of connections among individuals. 

In (Aleskerov, 2006) a novel approach for estimating the intensities of agents’ 

interactions was proposed. This method is based on the power index analysis and it was used to 

find the most pivotal fractions in Russian Parliament (1999-2003). Later, this method has been 

adapted to analyze the effects of the network and used in (Aleskerov et al., 2014). In that work 

only short-range interactions were taken into account and we will solve this problem in next 

Sections. 

 

2. Numerical Example 1 

In this Section we demonstrate some shortages of the existing methods of systemic risk 

assessment in details and propose a new method to solve them. 

Consider a hypothetical Numerical Example 1 of agents’ lending activities (graphical 

representation is shown on Figure 1) with a complex system of interconnections. There are 10 

agents in the system, one of them is a pure lender, six of them are both lenders and borrowers 

while three remaining elements are pure borrowers. In this case, the network structure is chosen 

such that the ratio of elements that play different roles (pure lenders, pure borrowers, both 

lenders and borrowers) was in line with the so-called "bow-tie picture" (Strogatz et al., 2001; 

Leonidov, Rumyantsev, 2013), which allows to display a general structure of a directed graph. 

This structure allows studying the quantitative composition of the components and the 

connections between them in terms of emergence of cascade defaults and contagion effects. 

The values on the edges represent the amount of loan (in USD) that one agent gave to 

another one. Arrows in the network indicate the direction of the money flows. For instance, the 

agent 2 borrows $500 from the agent 1 and at the same time lends $40 to the agent 3, $100 to the 

agent 6 and $60 to the agent 9. 
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Figure1. Numerical Example 1 

The standard approach for key elements detection in the network is to calculate different 

centrality measures. In Table 1 we provide the topological importance of each element by 

classical centrality measures that reveal the most pivotal borrower in the system. The definition 

of centrality measures is given in the last Section of the paper. 

Table 1.Classical centrality measures for Numerical Example 1 

Indices\Agents 1 2 3 4 5 6 7 8 9 10 
Weighted 

In-degree 0 500 150 150 400 1000 200 200 660 400 

Weighted 

Out-degree 1000 200 150 60 1100 0 1000 150 0 0 

Weighted 

Degree 

Difference 1000 -300 0 -90 700 -1000 -800 -50 -660 -400 

Weighted 

Degree 1000 700 300 210 1500 1000 1200 350 660 400 

Closeness, in 0.0111 0.0036 0.0002 0.0003 0.0026 0.0003 0.001 0.001 0.0004 0.0003 

Closeness, out 0,0002 0,001 0,0016 0,001 0,0002 0,0(1) 0,0003 0,0016 0,0(1) 0,0(1) 

Betweenness 0 1 0 3 5 0 6 0 0 0 

Eigenvector 0.67 0.46 0.21 0.11 1.00 0.81 0.45 0.23 0.31 0.15 

PageRank 0.06 0.08 0.09 0.07 0.08 0.25 0.07 0.07 0.11 0.13 

As it is shown in Table 1, centrality measures give results, which are very dissimilar in 

comparison to each other. Analyzing the measures, we can conclude that classical centrality 

indices consider borrowers 6 and 9 as the most powerful. However, none of these measures 

except PageRank considers the lender 10 as the key borrower, whereas in fact, its bankruptcy can 
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start a chain reaction that could lead to bankruptcy of the lenders 5 and 1. Look at the results 

from Table 2. Here we provide the consequences for individual bankruptcies of elements 1-10 

for 3 levels. On each step we are moving along the chain of borrowers checking the bankruptcy 

condition (in this case it is equivalent to losing more than 25% of their assets) . 

Table 2. Multistep simulation procedure for Numerical Example 1 

Element, i 

Total Losses/Total Credits 

Provided* 

Bankrupted Elements 

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

1  -  - -  ∅  -  - 

2 500/1000  - -  {1}  - -  

3 

100/1000; 

40/200; 

10/60  -  - ∅ -  -  

4 150/1000     ∅     

5 400/400     {1}     

6 

100/200; 

150/150; 

50/60; 

700/1100 -   - {2, 3, 4, 5} {1} -  

7 200/1100  - -  ∅  - -  

8 200/1100  - -  ∅ -  -  

9 

60/200; 

600/1000 200/1100  - {7} -  -  

10 

150/150; 

250/1000 400/1100 400/400 {7,8} {5} {1} 
* - the value represents total losses from element i bankruptcy divided by total amount of loans granted by 

each of i's direct creditors. Number of element indicated in the "Bankrupted elements" column.  

 One of the reason why centrality indices do not reveal the lender 10 as pivotal is that 

they take into account the number of direct interactions between agents, but at the same time 

ignore information about indirect links. Moreover, it is not always reasonable to consider all 

links in the particular network. Next, we will show that some borrowers may affect the financial 

stability of the lender only in conjunction with others, forming a so-called critical groups. 

In (Aleskerov et al., 2014) a novel method for estimating the intensities of agents’ 

interactions was proposed. This method is based on the power index analysis that was worked 

out in (Aleskerov, 2006) and adjusted for the network theory. The index is called a Key 

Borrower Index (KBI) and is employed to find the most pivotal borrower in a loan market in 

order to take into account some specific characteristics of financial interactions. An important 

feature of the KBI  is that it uses the parameter q which varies with agent and represents its 

critical amount of loan. 
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For the “one lender, many borrowers” case the KBI is calculated for each lender 

individually in order to determine the influence of each borrower to him. The distinct feature of 

the proposed index is that it takes into account short-range interactions between each lender and 

its borrowers. In other words, only direct neighbors are considered to estimate the direct and 

indirect influence to a specific lender. The intensity of direct connections 𝑝𝐿𝑖 between the lender 

L and the borrower 𝐵𝑖is calculated as 

𝑝𝐿𝑖 =
𝑐𝐿𝑖

∑ 𝑐𝐿𝑘𝑘
, 

where𝑐𝐿𝑘  is the amount of loan from the lender L to the borrower 𝐵𝑘, while the intensity of 

indirect connections 𝑝𝑗𝑖 between the lender L and the borrower 𝐵𝑖 through 𝐵𝑗 is calculated as 

𝑝𝑗𝑖 =

{
 
 

 
 

𝑐𝑗𝑖
∑ 𝑐𝐿𝑘𝑘

, 𝑖𝑓 𝑐𝐿𝑗 > 0, 𝑐𝑗𝑖 < 𝑐𝐿𝑖 and 𝑖 ≠ 𝑗,

𝑐𝐿𝑖
∑ 𝑐𝐿𝑘𝑘

, 𝑖𝑓𝑐𝐿𝑗 > 0, 𝑐𝑗𝑖 > 𝑐𝐿𝑖 and 𝑖 ≠ 𝑗,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.            

 

After the intensity of connections between the lender L and its borrowers is calculated, a 

set of all possible critical groups of borrowers for the lender L is constructed. A group of 

borrowers is critical if the total loan taken by these borrowers from the lender L is more than or 

equal to some pre-defined threshold 𝑞𝑖. The critical group is interpreted as a group whose default 

may lead to the default of the lender (while the lender is able to cover its losses from the distress 

of members outside the critical group). Thus, the group is "critical" if the total amount of its 

members’ borrowings is greater than or equal to a predefined threshold 𝑞𝑖. 

After a set of critical groups for the lender L is defined, we can identify a total number of 

groups where each borrower 𝐵𝑖 plays a pivotal role. A borrower 𝐵𝑖 is pivotal in the group if 

his/her exclusion from the critical group makes it non-critical. The value of the index for each 

borrower reflects the magnitude of his/her pivotal role in the group. The higher the value, the 

more pivotal the agent is. The most pivotal borrower will be the one that becomes pivotal in 

more critical groups than any other borrower does. 

The total intensity of connection between the lender L and the borrower 𝐵𝑖is aggregated 

over the intensities of all groups where the borrower 𝐵𝑖 is pivotal with respect to the size of the 

group. The influence of each borrower to the lender L is equal to the normalized value of the 

final intensity measure. 

For the “many lenders, many borrowers” case the KBI is aggregated over all lenders 

taking into account the size of each lender’s total loans. 

For our hypothetical example suppose that the threshold value q is equal to 25% of all 

outgoing links for each element. Then, using the above-mentioned methodology, we obtain the 
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values of the intensities of interaction taking into account direct and indirect components (see 

Table 3). 

Table 3.Key Borrower Index for Numerical Example 1 

Index\Agents 1 2 3 4 5 6 7 8 9 10 

Key Borrower 

Index, q=25% 
0 0.152 0 0 0.121 0.356 0.019 0.019 0.212 0.121 

A more detailed information on index calculation is provided in Appendix 1. 

As a result, the KBI that takes into consideration only short-range interactions as well as 

classical centrality measures considers borrowers 6 and 9 as the most pivotal. The importance of 

the borrower 10 is still underestimated which can be explained by the following reasons.  

First, in (Aleskerov et al., 2014) only direct interactions of the first level were taken into 

account, while we deal with the long-range links between elements of the network and analyze 

all three channels of influence, including the third, which has not considered yet.  

Second, different centrality measures and KBI very poorly estimate the characteristics of 

the system elements in terms of stocks. In other words, they took into account only flows 

between borrowers and creditors disregarding their size.  

Moreover, for the case of many lenders the idea of aggregation the KBI  over all lenders 

does not take into account on how closely connected different lenders are. Moreover, it does not 

fully take into account chain reactions in the whole system.  

Thus, the existing methods for assessing the impact of networks have three major 

drawbacks: 1) many of them do not take into account the intensity of the interaction of agents in 

networks; 2) they do not consider multistep interaction of agents; 3) they do not take into 

account the size of the vertex relative to those with whom they interact.  

We have provided a simple example that allows visualizing all of these drawbacks. In 

Numerical Example 1, one can find a key vertex not captured by existing methods as a 

guesstimate. However, in the case of real financial and other types of networks detection such 

vertices approximately is not always possible. 

We propose a new method for assessing of the agents' influence in the network, long-

range interaction centrality (LRIC) (Aleskerov et. al., 2016). Our approach is based on a very 

simple observation. When we consider the network of interconnected lenders and borrowers, 

each creditor’s sustainability will be affected by its direct borrowers. In addition, bankruptcy of 

any of direct borrowers may occur due to the bankruptcy of those ones to whom they were given 

loans, i.e. both direct and indirect borrowers are in relation to the original creditor.  

In other words, our methodology allows us to consider the interaction between a lender 

and a borrower not just on the first level, but also on some levels beyond. For example, the agent 
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6 is not a direct borrower of the agent 1. However, it does not mean that he has no effect on him 

as it is assumed in the KBI (we can see it on Figure 1). Five channels can be identified here: a) 

through the agent 2; b) through the agent 3; c) through the agent 5; d) through the agent 2 via the 

agent 3, when we consider long-range influence; e) through the agent 5 via the agents 4 and 7, 

when we consider long-range influence. 

There are two different ideas on how to take into account long-range interactions between 

members of the network. The first one is a distance-based approach where all different paths are 

considered for each member and somehow aggregated into a single value. The second one is 

based on the idea of simulations where we analyze the influence of individual members and their 

combinations to the whole network. Both ideas have an easy interpretation and can be applied to 

different areas.  

The results of the proposed methods for our Numerical Example are shown in Table 4. A 

more detailed information on indices calculation is provided in Appendix 1. 

Table 4. Long-range interaction centralities (LRIC) for Numerical Example 1 

Index\Agents 
Long-range interaction (LRI) influence 

1 2 3 4 5 6 7 8 9 10 

LRI based on 

paths 
0 0.09 0 0 0.09 0.22 0.09 0.09 0.23 0.19 

LRI based on 

simulations 
0 0.085 0 0 0.085 0.211 0.072 0.071 0.216 0.261 

As it is shown above, the results of our method differ from those that were obtained by 

classical centrality indices and the KBI. If long-range interactions are taken into account, agents 

6, 9 and 10 will be considered as the most pivotal in the system. In our opinion, these results 

represent the actual power distribution in the network. 

In the next Section we describe in details a new model for assessing the agents' influence 

in the network. 

 

3. The model 

The aim of this Section is to explain in details our approach and demonstrate how it 

works for the Numerical Example 2 (see Figure 2).  As for Numerical Example 1, we consider a 

complex system of interconnections for agent's lending activities. The values on the edges as in 

previous Section represent the amount of loan that one agent gave to another one, and network 

structure corresponds to the bow-tie representation. Moreover, this network is structurally closer 

to the actually existing network of financial interactions, as links between the agents are more 

diversified, and comparing to the Numerical Example 1 there are less strongly connected 
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components. As it was mentioned before, we propose two methods to find key pivotal borrowers 

in the system.  

The main difference from the KBI is that our model takes into account s-long-range 

borrowers for each lender. In many problems interactions of indirect neighbors play a significant 

role in the whole system, hence, there is a need to consider these links. The parameter s defines 

how many “layers” are examined for each lender, it depends on the problem and in general case 

can be unspecified so all possible direct and indirect neighbors are taken into account. 

 

Figure 2. Numerical Example 2 

To describe the proposed approach some definitions are given below. 

Consider a set of members 𝑁, 𝑁 = {1,… , 𝑛}, and a matrix 𝐴 = [𝑎𝑖𝑗], where 𝑖, 𝑗 ∈ 𝑁 and 

𝑎𝑖𝑗 is the loan from the member i to the member j. For simplicity suppose the matrix 𝐴being 

already transformed, i.e., if 𝑎𝑖𝑗 ≠ 0then 𝑎𝑗𝑖 = 0.  

Denote by 𝑁𝑖 a set of direct neighbors of the i-th member, i.e.,𝑁𝑖 = {𝑗 ∈ 𝑁: 𝑎𝑖𝑗 ≠ 0}. 

Obviously, the total number of possible groups of direct neighbors for the member iis equal to 

2|𝑁𝑖|. 

Definition 1. The group of direct neighbors of the i-th memberΩ(𝑖) ⊆ 𝑁𝑖is critical if 

∑ 𝑎𝑖𝑗𝑗∈Ω(𝑖) ≥ 𝑞𝑖, where 𝑞𝑖 is a predefined threshold of the i-th member. 
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Definition 2. The member 𝑥 ∈ Ω(𝑖) is pivotal if ∑ 𝑎𝑖𝑗𝑗∈Ω(𝑖)\{𝑥} < 𝑞𝑖. Denote by Ω𝑝(𝑖) a 

set of pivotal members in the group Ω(𝑖), i.e., Ω𝑝(𝑖) = {𝑦 ∈ Ω(𝑖)|∑ 𝑎𝑖𝑗𝑗∈Ω(𝑖)\{𝑦} < 𝑞𝑖}. 

For our Numerical Example 2 there are 11 agents in the system (n=11): 9 of them are 

both lenders and borrowers while 2 remaining elements are pure borrowers. So, we could form 

the matrix 𝐴 of the size of 11 × 11. The sets of direct neighbors 𝑁𝑖 and critical groups when 

𝑞𝑖 = 25% for each element are shown in Table 5.  

Table 5. Direct borrowers and critical groups for Numerical Example 2 

Element, i 
Direct borrowers, 

𝑵𝒊 
Critical groups, 

𝛀(𝒊), 𝒒 = 𝟐𝟓% 

1 {2, 3, 4} 
{2}, {2, 3}, {2, 4}, 

{3, 4}, {2, 3, 4}, 

2 {5, 6, 8} 
{6}, {5, 6}, {5, 8}, 

{6, 8}, {5, 6, 8} 

3 {2, 4, 5} 
{4}, {2, 4}, {2, 5}, 

{4, 5}, {2, 4, 5} 

4 {5, 7, 9} 
{7}, {5, 7}, {5, 9}, 

{7, 9}, {5, 7, 9} 

5 ∅ ∅ 

6 {10, 11} {11}, {10, 11} 

7 {10, 11} {11}, {10, 11} 

8 {10, 11} {11}, {10, 11} 

9 {10, 11} {11}, {10, 11} 

10 {1} {1} 
11 ∅ ∅ 

Pivotal members for the element 1 when 𝑞1 = 25% is provided in Table 6. 

Table 6. Critical groups and pivotal member for the element 1 

Critical groups, Ω(1) Pivotal members, Ω𝑝(1) 

{2} {2} 

{2,3} {2} 

{2,4} {2} 

{3,4} {3, 4} 

{2,3,4} ∅ 

 

3.1. S-long-range interactions index based on paths 

Let us construct a matrix 𝐶 = [𝑐𝑖𝑗] with respect to the matrix A and predefined threshold 

as 

𝑐𝑖𝑗 = {

𝑎𝑖𝑗

min
𝛺(𝑖)⊆𝑁𝑖|𝑗∈𝛺𝑝(𝑖)

∑ 𝑎𝑖𝑙𝑙∈𝛺(𝑖)
, 𝑖𝑓 𝑗 ∈ 𝛺𝑝(𝑖) ⊆ 𝑁𝑖 ,

0, 𝑗 ∉ 𝛺𝑝(𝑖) ⊆ 𝑁𝑖,

 

where𝛺(𝑖) is a critical group of direct neighbors for the element i, 𝛺(𝑖) ⊆ 𝑁𝑖, and 𝛺𝑝(𝑖) is 

pivotal group for the element i,𝛺𝑝(𝑖) ⊆ 𝛺(𝑖). 
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The construction of matrix 𝐶 is highly related to (Aleskerov et al., 2014) because it 

requires to consider separately each element of the system as a lender while other participants of 

the system are assumed as borrowers. The only difference here is that in our approach only 

groups of direct neighbors are considered. 

The interpretation of matrix C is rather simple. If 𝑐𝑖𝑗 = 1 then the borrower j has a 

maximal influence to the lender i, i.e., the loan amount to the borrower j is critical for the lender 

i. On the contrary, if 𝑐𝑖𝑗 = 0 then the borrower j does not directly influence the lender i. Finally, 

the value 0 < 𝑐𝑖𝑗 < 1 indicates the impact level of the borrower j to the bankruptcy of the lender 

i. 

Let us construct a matrix 𝐶 = [𝑐𝑖𝑗] for Numerical Example 2 with threshold value q=25% 

according to the approach based on paths. For example, when we want to estimate the direct 

influence of borrowers for the element 1, we search for a minimal critical group, i.e. a critical 

group with the lowest total loan from the element 1, where a particular borrower is pivotal and 

then estimate the direct influence 𝑐1𝑗. According to Table 4, the element 1 has 3 direct 

borrowers, hence, the minimal critical group for the element 2 is {2} and 𝑐12 =
60

60
= 1. For the 

elements 3 and 4 the minimal critical group is {3, 4} and 𝑐13 =
16

16+24
= 0.4 ,  𝑐14 =

24

16+24
= 0.6. 

A graphical representation of the matrix is shown on Figure 3. 

 

Figure 3. The network for matrix C. 
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In addition, we can see on Figure 3 that the element 10 does not influence any other 

element in the system. 

Thus, we evaluated the direct influence of the first level of each element in the system. To 

define the indirect influence between two elements let us give a definition of the ρ-path. 

Denote by ρ a binary relation which is constructed as 

𝑖𝜌𝑗 ⇔ 𝑐𝑖𝑗 > 0. 

A pair (i, j) such that iρj is called a ρ-step. A path from i to j is an ordered sequence of 

steps starting at i and ending at j, such that the second element in each step coincides with the 

first element of the next step. If all steps in a path belong to the same relation ρ, we call it ρ-path, 

i.e., a ρ-path is an ordered sequence of elements i, j1, …,jk, j, such that iρj1, j1ρj2, …, jk-1ρjk, jkρj. 

The number of steps in a path is called the path’s length. 

To define the indirect influence between any two elements consider all ρ-paths between 

them of length less than some parameter s. Each path should not contain any cycles, i.e. there are 

no elements that occur in the ρ-path at least twice. For instance, there are only two paths between 

elements 8 and 1 from the Numerical Example 2 (see Figure 4): dashed lines, via element 2 

(8ρ2ρ1), and dotted lines, via elements 3 and 2 (8ρ2ρ3ρ1).  

 

Figure 4. Paths between elements 8 and 1 (via element 2 - dashed lines, via elements 2 and 3 - 

dotted lines). 
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Denote by 𝑃𝑖𝑗 = {𝑃1
𝑖𝑗
, 𝑃2

𝑖𝑗
, … , 𝑃𝑚

𝑖𝑗
}a set of unique ρ-paths from i to j, where m is the total 

number of paths and denote by 𝑛(𝑘) = |𝑃𝑘
𝑖𝑗
|, where 𝑘 = 1,𝑚̅̅ ̅̅ ̅̅ , a length of the k-th path. Then we 

can define the indirect influence𝑓(𝑃𝑘
𝑖𝑗
) between elements i and j via the k-th ρ-path 𝑃𝑘

𝑖𝑗
 as 

𝑓(𝑃𝑘
𝑖𝑗
) = 𝑐𝑖𝑗(1,𝑘) ∙ 𝑐𝑗(1,𝑘)𝑗(2,𝑘) ∙ … ∙ 𝑐𝑗(𝑛(𝑘),𝑘)𝑗,    (1) 

or 

𝑓(𝑃𝑘
𝑖𝑗
) = min (𝑐𝑖𝑗(1,𝑘), 𝑐𝑗(1,𝑘)𝑗(2,𝑘), … , 𝑐𝑗(𝑛(𝑘),𝑘)𝑗),    (2) 

where 𝑗(𝑙, 𝑘), 𝑙 = 1, 𝑛(𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅is the l-th element which occurs on k-thρ-path from i to j. 

The interpretation of formulae (1) and (2) is the following. According to the formula (1) 

the total influence of the element j to the element i via the k-th ρ-path 𝑃𝑘
𝑖𝑗

 is calculated as the 

aggregated value of direct influences between elements which are on the k-th ρ-path between i 

and j while the formula (2) defines the total influence as the minimal direct influence between 

any elements from the k-th ρ-path. 

A simple example of indirect influence estimation between two elements is provided on 

Figure 5. In the first case the influence is proportional to the losses (risks) from bankruptcy of 

each borrower on the path while in the second case the influence is equal to the minimal risk of 

bankruptcy of the borrower which is on the path between elements 1 and 2.  

 

Figure 5. Indirect influence: a) multiplication of direct influences and  

b) minimal direct influence 

It is necessary to mention that in some cases there is no need to consider all possible 

paths between elements i and j, i.e. we can assume that starting from some path’s length s 

indirect interactions does not influence the initial member. Thus, we designed the parameter s 

that defines how many layers (path’s length) are taken into account. 

For example, consider all paths between elements 11 and 1 from Numerical Example 2 

(see Figure 3). There are four paths between these elements: 11ρ8ρ2ρ1, 11ρ9ρ4ρ1, 11ρ8ρ2ρ3ρ1 
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and 11ρ9ρ4ρ3ρ1. If parameter  𝑠 = 3, so we will be interested only in first two paths, whereas 

the others will not be taken into account. 

Since there can be many paths between two elements of the system, there is a problem of 

aggregating the influence of different paths. To estimate the aggregated indirect influence several 

methods are proposed.  

The aggregated results will form a new matrix 𝐶∗(𝑠) = [𝑐𝑖𝑗
∗ (𝑠)]. 

1. The indirect influence: sum of paths influences 

𝑐𝑖𝑗
∗ (𝑠) = min (1, ∑ 𝑓(𝑃𝑘

𝑖𝑗
)𝑘: 𝑛(𝑘)≤𝑠 ).    (3) 

2. The indirect influence: maximal path influence 

𝑐𝑖𝑗
∗ (𝑠) = max𝑘: 𝑛(𝑘)≤𝑠 𝑓(𝑃𝑘

𝑖𝑗
).     (4) 

3. The indirect influence: the threshold rule 

The threshold aggregation was proposed in (Aleskerov et al., 2007) and the idea of 

the rule is rather simple. Suppose we have a set of elements and each element is evaluated by n 

grades that may have m different values. Then we can calculate for each element the values 

𝑣1(𝑘), 𝑣2(𝑘),…, 𝑣𝑚(𝑘) which contain information on how many i-th (𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ ) grades each 

element received. Then according to the threshold rule the element x V-dominates the element y 

if 𝑣1(𝑥) < 𝑣1(𝑦) or, if there exists 𝑑 ≤ 𝑚, such that 𝑣ℎ(𝑥) = 𝑣ℎ(𝑦), ∀ℎ = 1,… , 𝑑 − 1, and 

𝑣𝑑(𝑥) < 𝑣𝑑(𝑦). In other words, first, the number of worst places are compared, if these numbers 

are equal than the number of second worst places are compared, and so on. The element which is 

not dominated by any other element via V is considered as the best one. 

Considering the threshold rule as one of possible ways on how the indirect influence can 

be evaluated, we propose the following aggregation procedure 

𝑐𝑖𝑗
∗ (𝑠) = 𝑓(𝑃𝑧

𝑖𝑗
),      (5) 

where 

𝑧 = argmin𝑘: 𝑛(𝑘)≤𝑠 𝑣(𝑃𝑘
𝑖𝑗
),      (6) 

and 

𝑣(𝑃𝑘
𝑖𝑗
) = ∑ 𝑣l(𝑃𝑘

𝑖𝑗
) ∗ (𝑠 + 1)𝑚−𝑙𝑚

𝑙=1 + 𝑠 − 𝑛(𝑘). 

The formula (6) is identical to the threshold rule (Aleskerov et al., 2010). 

Note that if there is no path between elements i and j, then 𝑐𝑖𝑗
∗ (𝑠) = 0. 

For example, consider that paths between elements 11 and 1. According to the formula 

(1) the influence of the path 11ρ8ρ2ρ1 (path's length = 3) is equal to 0.8, the influence of the path 

11ρ8ρ2ρ3ρ1 (path's length = 4) is equal to 0.56, the influence of the path 11ρ9ρ4ρ1 (path's length 

= 3) is equal to 0.426, the influence of the path 11ρ9ρ4ρ3ρ1 (path's length = 4) is equal to 0.284. 
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If s=3, only two paths are taken into account. Thus, the total influence of the element 11 to the 

element 1 will be equal to 1 according to the sum of paths influences (min {1, (0.8 + 0.56)}) or 

will be equal to 0.8 according to the maximal path influence (max {0.8, 0.56}). For the threshold 

rule calculations are not so obvious since they depend on the system of grades which will be 

described later. 

The interpretation of formulae (3)-(5) in term of borrowers is the following. The sum of 

paths influences is equivalent to the most pessimistic case of the indirect influence where we 

take into account all possible channels of risk from a particular borrower to the creditor. The 

maximal path influence and the influence assessment by the threshold rule help us to find the 

most vulnerable risk transmission channel. 

Thus, we can define the indirect influence between elements i and j via all possible paths 

between these elements. The paths influences can be evaluated by formulae (1)-(2) and 

aggregated into a single value by formulae (3)-(5). Thus, 6 combinations are possible for matrix 

𝐶∗(𝑠) construction (see Table 7). In our opinion, all possible combinations of formulae have a 

sense except the combination of formulae (2) and (3). 

Table 7. Possible combinations of methods for indirect influence 

 
Paths aggregation 

Sum of paths 

influences 

Maximal path 

influence 
Threshold rule 

P
a
th

 i
n

fl
u

en
ce

 

Multiplication of 

direct influence 
SumPaths MaxPath MultT 

Minimal direct 

influence 
– MaxMin MaxT 

For our Numerical Example 2 we can differently construct the matrix 𝐶∗ which represents 

the total influence and is used for aggregation of influences into a single vector with respect to 

the weights.  

For instance, let us calculate the influence of the element 5 to the element 1. Consider all 

possible paths from the element 5 to the element 1. They are shown in Table 8. 
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Table 8. Possible paths between elements 5 and 1 

ID Path 
Multiplication of 

path influences 

Minimal direct 

influence 

1 5→⏟
0.2

2→⏟
1

1 0.2 0.2 

2 5→⏟
0.4

3→⏟
0.4

1 0.16 0.4 

3 5 →⏟
0.29

4→⏟
0.6

1 0.174 0.29 

4 5→⏟
0.2

2→⏟
0.6

3→⏟
0.4

1 0.048 0.2 

5 5 →⏟
0.29

4→⏟
1

3→⏟
0.4

1 0.116 0.29 

Thus, there are five possible ways how the element 5 influences the element 1. Let us 

now aggregate this information into a single value by different methods. To compare different 

paths by the threshold rule the following grades of direct influence were developed. 

Grades: 

0. 𝑐𝑖𝑗 = 0; 

1. 0 < 𝑐𝑖𝑗 ≤ 0.25; 

2. 0.25 < 𝑐𝑖𝑗 ≤ 0.5; 

3. 0.5 < 𝑐𝑖𝑗 ≤ 0.8; 

4. 0.8 < 𝑐𝑖𝑗 ≤ 1. 

Now we can define the path between the elements 5 and 1 according to the threshold rule. 

Note that for the threshold rule the values on the edges are equal to the grades which was 

proposed above. The results are provided in Table 9. 

Table 9. Paths aggregation by the threshold rule, s=3 

ID, k Path 
Path 

(grades on edges) 

Paths influence, 

𝒗(𝑷𝒌
𝟏𝟓) 

1 5→⏟
0.2

2→⏟
1

1 5→⏟
1

2→⏟
4

1 66 

2 5→⏟
0.4

3→⏟
0.4

1 5→⏟
2

3→⏟
2

1 33 

3 5 →⏟
0.29

4→⏟
0.6

1 5→⏟
2

4→⏟
3

1 21* 

4 5→⏟
0.2

2→⏟
0.6

3→⏟
0.4

1 5→⏟
1

2→⏟
3

3→⏟
2

1 84 

5 5 →⏟
0.29

4→⏟
1

3→⏟
0.4

1 5→⏟
2

4→⏟
4

3→⏟
2

1 33 

*
the path chosen by the threshold rule 

The overall results are provided in Table 10. 
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Table 10. The total influence of the element 5 to the element 1 by different methods 

Method Considered paths IDs Influence 

SumPaths 1-5 0.698 

MaxPath 1 0.2 

MaxMin 2 0.4 

MultT 3 0.174 

MaxT 3 0.29 

Similarly, we can estimate the influence of any other elements and construct the matrix 

𝐶∗ according to different methods. The results are provided in Table 11-15. 

Table 11. Matrix 𝐶∗ for the Numerical Example 2, SumPaths 

 1 2 3 4 5 6 7 8 9 10 11 Weights 

1 0 1 0.40 1 0.70 1 1 0.99 0.71 0 1 0.11 

2 0 0 0 0 0.20 1 0 0.80 0 0 1 0.11 

3 0 0.60 0 1 0.81 0.60 1 0.48 0.71 0 1 0.11 

4 0 0 0 0 0.29 0 1 0 0.71 0 1 0.11 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 0.11 

7 0 0 0 0 0 0 0 0 0 0 1 0.11 

8 0 0 0 0 0 0 0 0 0 0 1 0.11 

9 0 0 0 0 0 0 0 0 0 0 1 0.11 

10 1 1 0.40 1 0.70 1 1 0.99 0.71 0 1 0.11 

11 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0.11 0.29 0.09 0.33 0.30 0.40 0.44 0.36 0.31 0 1  

 

 
Total 

(normalized) 
0.03 0.08 0.02 0.09 0.08 0.11 0.12 0.10 0.09 0 0.27 

 

Table 12. Matrix 𝐶∗ for the Numerical Example 2, MaxPath 

 1 2 3 4 5 6 7 8 9 10 11 Weights 

1 0 1 0.40 0.60 0.20 1 0.60 0.80 0.42 0 1 0.11 

2 0 0 0 0 0.20 1 0 0.80 0 0 1 0.11 

3 0 0.60 0 1 0.40 0.60 1 0.48 0.71 0 1 0.11 

4 0 0 0 0 0.29 0 1 0 0.71 0 1 0.11 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 0.11 

7 0 0 0 0 0 0 0 0 0 0 1 0.11 

8 0 0 0 0 0 0 0 0 0 0 1 0.11 

9 0 0 0 0 0 0 0 0 0 0 1 0.11 

10 1 1 0.40 0.60 0.20 1 0.60 0.80 0.42 0 1 0.11 

11 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0.11 0.29 0.09 0.24 0.14 0.40 0.36 0.32 0.25 0 1 

 Total 

(normalized) 
0.03 0.09 0.03 0.08 0.04 0.12 0.11 0.10 0.08 0 0.31 
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Table 13. Matrix 𝐶∗ for the Numerical Example 2, MaxMin 

 1 2 3 4 5 6 7 8 9 10 11 Weights 

1 0 1 0.40 0.60 0.40 1 0.60 0.80 0.60 0 1 0.11 

2 0 0 0 0 0.20 1 0 0.80 0 0 1 0.11 

3 0 0.60 0 1 0.40 0.60 1 0.60 0.71 0 1 0.11 

4 0 0 0 0 0.29 0 1 0 0.71 0 1 0.11 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 0.11 

7 0 0 0 0 0 0 0 0 0 0 1 0.11 

8 0 0 0 0 0 0 0 0 0 0 1 0.11 

9 0 0 0 0 0 0 0 0 0 0 1 0.11 

10 1 1 0.40 0.60 0.40 1 0.60 0.80 0.60 0 1 0.11 

11 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0.11 0.29 0.09 0.24 0.19 0.40 0.36 0.33 0.29 0 1 

 Total 

(normalized) 
0.03 0.09 0.03 0.07 0.06 0.12 0.11 0.10 0.09 0 0.30 

Table 14. Matrix 𝐶∗ for the Numerical Example 2, MultT 

 1 2 3 4 5 6 7 8 9 10 11 Weights 

1 0 1 0.40 0.60 0.18 1 0.60 0.80 0.42 0 1 0.11 

2 0 0 0 0 0.20 1 0 0.80 0 0 1 0.11 

3 0 0.60 0 1 0.40 0.60 1 0.48 0.71 0 1 0.11 

4 0 0 0 0 0.29 0 1 0 0.71 0 1 0.11 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 0.11 

7 0 0 0 0 0 0 0 0 0 0 1 0.11 

8 0 0 0 0 0 0 0 0 0 0 1 0.11 

9 0 0 0 0 0 0 0 0 0 0 1 0.11 

10 1 1 0.40 0.60 0.18 1 0.60 0.80 0.42 0 1 0.11 

11 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0.11 0.29 0.09 0.24 0.14 0.40 0.36 0.32 0.25 0 1 

 Total 

(normalized) 
0.03 0.09 0.03 0.07 0.04 0.12 0.11 0.10 0.08 0 0.31 

Table 15. Matrix 𝐶∗ for the Numerical Example 2, MaxT 

 1 2 3 4 5 6 7 8 9 10 11 Weights 

1 0 1 0.40 0.60 0.29 1 0.60 0.80 0.60 0 1 0.11 

2 0 0 0 0 0.20 1 0 0.80 0 0 1 0.11 

3 0 0.60 0 1 0.40 0.60 1 0.60 0.71 0 1 0.11 

4 0 0 0 0 0.29 0 1 0 0.71 0 1 0.11 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 0.11 

7 0 0 0 0 0 0 0 0 0 0 1 0.11 

8 0 0 0 0 0 0 0 0 0 0 1 0.11 

9 0 0 0 0 0 0 0 0 0 0 1 0.11 

10 1 1 0.40 0.60 0.29 1 0.60 0.80 0.60 0 1 0.11 

11 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0.11 0.29 0.09 0.24 0.16 0.40 0.36 0.33 0.29 0 1 

 Total 

(normalized) 
0.03 0.09 0.03 0.08 0.05 0.13 0.11 0.10 0.09 0 0.31 
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The aggregation of matrix 𝐶∗(𝑠)into a single vector that shows the total influence of each 

element of the system can be done with respect to the weights (importance) of each element as it 

is done in (Aleskerov et al., 2014). 

As a result, we can see that elements 6, 7 and 11 are considered as the most pivotal in the 

system while the influence of the element 5 is more than the influence of the elements 1 and 10. 

Now let us consider the second approach based on simulations. 

3.2. S-Long-Range Interactions Centrality index based on simulations 

Another approach of estimating the power of each element in the system is based on the 

following idea. Suppose that some borrowers are not capable to return the loan. Will they form 

critical group? Will it lead to the fact that their creditors in turn will not cover the loans to other 

creditors? 

More formally, let a construct a matrix 𝐶 = [𝑐𝑖𝑗]with respect to the matrix A and 

predefined threshold as 

𝑐𝑖𝑗 =

{
 

 
1, 𝑖𝑓 𝑎𝑖𝑗 ≥ 𝑞𝑖

𝑎𝑖𝑗

𝑞𝑖
, 𝑖𝑓 0 < 𝑎𝑖𝑗 < 𝑞𝑖

0, 𝑖𝑓 𝑎𝑖𝑗 = 0.

 

In other words, the matrix 𝐶 indicates what share of the threshold value (critical loan 

amount) the element i gave to the element j. The matrix 𝐶is used to evaluate the long-range 

influence between elements of the system through simulations. A graphical representation of the 

matrix is shown on Figure 6. 

Similarly, let us say that the group 𝛺(𝑖) ⊆ 𝑁𝑖is critical if ∑ 𝑐𝑖𝑘𝑘∈𝛺(𝑖) ≥ 1, and any 

element in group 𝛺(𝑖) is not capable to return the loan. If the group 𝛺(𝑖)exists, then i is not 

capable to return the loan to his own creditor. 

Assume now that some borrowers (total number is k0) are not capable to return a loan. 

Then, we can define a list of borrowers (total number is k1) for which k0borrowers form a critical 

groups. Similarly, we can define a list of borrowers (total number is k2) for which k0+ 

k1borrowers form the critical group. The procedure continues until the predefined limit in the 

number of stages s is reached or there is a stage r (in the worst case when the parameter s is 

undefined r is less than or equal the diameter of the network) such that 𝑘𝑟 = 0. Thus, we derived 

a list of borrowers (total number is ∑ 𝑘𝑙
min (𝑟,𝑠)
𝑙=1 ) that are not capable to return their loans if we 

assume that k0 borrowers cannot return their loans. 
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Figure 6. A graphical representation of matrix C for simulations approach. 

For instance, suppose that elements 5, 6, 9 are not capable to return their loans. Then we 

can define which elements in turn will not be able to cover their loans (see Table 16). 

Table 16. Simulation procedure for the combination {5, 6, 9} 

Step Bankrupted Elements Total number of elements 

0 {5, 6, 9} k0=3 

1 {2, 4} k1=2 

2 {1, 3} k2=2 

3 {10} k3=1 

Thus, the bankruptcy of elements 5, 6 and 9 will lead to the bankruptcy of other five 

elements. 

Similarly, we can assume any other combination of borrowers that cannot return their 

loans and define a list of all bankrupted borrowers. The results will form a new matrix     

 𝐶∗(𝑠) = [𝑐𝑖𝑗
∗ (𝑠)], which shows in what percentage of cases the borrower i could not return its 

loans if we assume that the borrower j is not capable to return his own loans. 

The interpretation of the matrix 𝐶∗(𝑠) is rather simple. If the value 𝑐𝑖𝑗
∗  is close to 1, then 

borrower j is very critical for the borrower i. On the contrary, if the value 𝑐𝑖𝑗
∗  is close to 0, then 

the borrower j hardly influences the borrower i. The results can be aggregated into a single 

vector that shows the total influence of each element in the system.  
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Thus, we can construct the matrix 𝐶∗(𝑠) = [𝑐𝑖𝑗
∗ (𝑠)] for the Numerical Example 2 (see 

Table 17). 

Table 17. Matrix 𝐶∗ for the Numerical Example 2 (simulations) 

 1 2 3 4 5 6 7 8 9 10 11 Weights 

1 0 1 0 1 0.59 1 1 0.43 0.42 0 1 0.11 

2 0 0 0 0 0.41 1 0 0.42 0 0 1 0.11 

3 0 0.57 0 1 0.92 0.48 1 0.47 0.45 0 1 0.11 

4 0 0 0 0 0.40 0 1 0 0.42 0 1 0.11 

5 0 0 0 0 0 0 0 0 0 0 0 0.00 

6 0 0 0 0 0 0 0 0 0 0 1 0.11 

7 0 0 0 0 0 0 0 0 0 0 1 0.11 

8 0 0 0 0 0 0 0 0 0 0 1 0.11 

9 0 0 0 0 0 0 0 0 0 0 1 0.11 

10 1 1 0 1 0.62 1 1 0.46 0.47 0 1 0.11 

11 0 0 0 0 0 0 0 0 0 0 0 0.00 

Total 0.11 0.29 0.00 0.33 0.33 0.39 0.44 0.20 0.20 0.00 1.00 

 Total 

(normalized) 
0.03 0.09 0 0.10 0.10 0.12 0.14 0.06 0.06 0 0.30 

One of the key advantages of this approach is that it accurately takes into account all 

chain reactions of the system, so-called domino or contagion effect. 

One of the key questions of this approach is which borrowers should be chosen on the 

first stage. For the general case, we can choose each borrower the same number of times. 

However, in real-life problems this is not always the case since different elements have different 

probability of default. It means that these probabilities can be taken into account at the 

simulation stage. 

Another important issue of this approach is how we should define pivotal borrowers for 

each lender. Obviously, it is possible that for the lender i there is a group of borrowers of size 

k
*
<<k0that will form a critical group and, consequently, lead to bankruptcy of the lender i. In 

other words, not all k0 borrowers equally influence a specific lender. Thus, there is a need to find 

a minimal set of pivotal borrowers 𝛺𝑝(𝑖) for each lender i on each simulation stage. Currently, 

there is no solution for this problem except considering all possible subsets from the set of k0 

elements, which is one of the drawbacks of our approach. 

A list of pivotal borrowers for each bankrupted element due to the bankruptcy of 

elements 5, 6 and 9 is provided in Table 18. 
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Table 18. Key borrowers detection for simulation procedure for the combination {5, 6, 9} 

Borrower i Critical groups, 𝜴(𝒊) 
Pivotal borrowers 

from {5, 6, 9}, 𝜴𝒑(𝒊) 

{1} {2}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4} {5, 6, 9} 

{2} {6}, {5, 6} {6} 

{3} {4}, {2, 4}, {2, 5}, {4, 5}, {2, 4, 5} {5, 6, 9} 

{4} {5, 9} {5, 9} 

{10} {1} {5, 6, 9} 

Another drawback of the proposed idea is the high computational complexity since on the 

simulation stage we should consider a large amount of combinations of borrowers, which are 

assumed of not being capable to return their loans. It leads to the fact that the value k0 should be 

somehow constrained which actually sounds reasonable since the probability that large number 

of borrowers will not be able to return their loans at the same time is very small. One of the 

solutions that allow to decrease the computational complexity is to set some limits on the number 

of combinations, chain reactions or to add some probabilities of bankruptcy of each borrower. 

Finally, we try to compare the results according to our model with centrality measures 

and the Key Borrower Index proposed in (Aleskerov et al., 2014). 

Let us calculate the centrality measures and the Key Borrower Index. The results are 

shown in Table 19. More information on calculations of these indices is provided in Appendix 2. 

Table 19. Centrality measures and Key Borrower Index for Numerical Example 2 

Indices\Agents 1 2 3 4 5 6 7 8 9 10 11 

C
en

tr
al

it
y

 m
ea

su
re

s 

Weighted 

In-degree 
100 84 16 84 32 70 66 24 24 96 304 

Weighted 

Out-degree 
100 100 100 100 0 100 100 100 100 100 0 

Weighted 

Degree 

Difference 
0 16 84 16 -32 30 34 76 76 4 -304 

Weighted 

Degree 
200 184 116 184 32 170 166 124 124 196 304 

Closeness in 0.0014 0.0012 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0012 0.002 

Closeness 

out 
0.001 0.0007 0.001 0.001 0.009 0.007 0.001 0.001 0.001 0.0011 0.009 

Betweenness 45 23 0 17 0 10 10 0 0 43 0 

Eigenvector 0.61 0.57 0.28 0.47 0.07 0.7 0.65 0.56 0.55 0.64 1 

PageRank 0.11 0.10 0.05 0.08 0.05 0.095 0.08 0.06 0.05 0.09 0.22 

Key Borrower 

Index, q=25% 
0.11 0.10 0.01 0.11 0.01 0.10 0.10 0.01 0.01 0 0.44 

As it is shown above, most centrality measures as well as the Key Borrower Index 

consider elements 1 and 11 as pivotal. The influence of the element 1 can be explained by the 

fact that it directly influences the element 10, which is highly interconnected with other elements 

of the system. However, if we accurately analyze the element 10, we will see that this borrower 

does not influence any lender since his loan is less than the critical threshold value for each 
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lender and this element is not pivotal in any groups of borrowers. Thus, the influence of the 

element 1 is overestimated by all indices while the influence of the element 10 should be equal to 

zero. On the contrary, the influence of the element 5 is underestimated; however, this element 

directly and indirectly influences elements 1, 2, 3, 4 and 10. Another important issue is that none 

of these indices except eigenvector centrality considers elements 6 and 7 as pivotal. However, 

these elements directly influence elements 2 and 4 and indirectly influence elements 1,3,10. 

Both our proposed approaches take into account these observations and consider elements 

6, 7 and 11 as the most pivotal in the system. The results are similar to the results of the 

eigenvector centrality, however, the eigenvector centrality also highly evaluates the power of 

elements 1 and 10 while according to our methods their influence is rather small (it is 0 for the 

element 10).  

It is also important to note that the key element does not necessarily should be at the end 

of the chain, i.e. play a role of pure borrower. The most pivotal element can also be located in the 

center of the network. 

 

3. Empirical application - country assessment 

In this Section the model outlined so far will be applied for evaluation of the level of 

banking systems interconnectedness. We try to detect countries with the most interconnected 

financial systems taking into consideration the intensities of countries’ banking systems 

interactions. At the same time, we understand the limitations of the existing data. The analysis of 

cross-border country exposures relies primarily on data aggregated at the level of countries, and, 

hence, overlooks bank-level heterogeneity. 

The data is taken from the Bank of International Settlements (BIS) statistics
f
. More 

precisely, we use the BIS consolidated banking statistics on an ultimate risk basis. For example, 

suppose that a bank from country A extends a loan to a company from country B and the loan is 

guaranteed by a bank from country C. On an ultimate risk basis, this loan would be reported as a 

claim on the country C because, if the company from B were unable to meet its obligations, then 

ultimately the bank from A would be exposed to the bank from C that guaranteed the loan. In 

other words, claims are allocated to the country where the final risk lies.  

Foreign claims in CBS statistics are designed to analyze the exposure of internationally 

active banks to individual countries and sectors. The sectoral classification consists of a) banks; 

                                                           
f
Table 9D “Foreign claims by nationality of reporting banks, ultimate risk 

basis”(http://www.bis.org/statistics/r_qa1509_hanx9d_u.pdf) 

http://www.bis.org/statistics/r_qa1509_hanx9d_u.pdf
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b) official sector, which includes general government
g
, central banks and international 

organizations; c) non-bank private sector, including non-bank financials. 

Thus, our figures indicate the i-th banking system foreign claims on borrowers from 

different sectors in country j, which include its worldwide consolidated direct cross-border 

claims on country j plus the positions booked by its affiliates (subsidiaries and branches) in 

country j vis-à-vis residents of country j. The data covers on-balance sheet claims as well as 

some off-balance sheet exposures of banks headquartered in the reporting country and provides a 

measure of country credit risk exposures consonant with banks’ own risk management systems.  

The reporting countries comprise the G10 countries (Belgium, Canada, France, Germany, 

Japan, Netherlands, Sweden, Switzerland, United Kingdom, and USA) plus Australia, Austria, 

Chile, Finland, Greece, India, Ireland, South Korea, Portugal, Spain and Turkey. 

BIS consolidated banking statistics apart from information about banking foreign claims 

includes aggregated data on regional country groupings such as regional residuals of developed 

countries, offshore centers, Africa and the Middle East, Asia-Pacific, Europe, Latin America and 

the Caribbean and "Unallocated" claims. These positions are used in BIS Statistics in cases when 

the balance of payments concept of residence of both the reporting bank and its counterparty 

could not be applied. In this paper we analyze only cross-country relationships, so we exclude 

these groupings from the database as well as a position of international financial organizations. 

As a result, we obtained a database covering 22 countries that have bank foreign claims 

and 198 countries that have obligations for the end of 1Q 2015. Thus, the network considered on 

the basis of the data includes all information about the international borrowings, except for 

transactions between countries which do not report. According to BIS Statistical Bulletin, our 

network covers about 94% of total foreign claims and other potential exposures on an ultimate 

risk basis. 

The important aspect of the analysis is the choice of the critical loan amount threshold 

level for each country. One possible way to define it is to follow the recommendations of the 

Basel Committee (BCBS, 2013) on large exposure limits (25% of the Tier 1 capital). At the 

international level, when we deal with banking system's borrowings, choosing an appropriate 

threshold level (critical loan amount) is not so obvious exercise. We decided to put on the edges 

of the network not loans, but the value measured by the ratio of loans to the gross domestic 

product (GDP) of the lending country in order to take into account the relative size of the loan. In 

                                                           
g
According to Eurostat government finance statistics (http://ec.europa.eu/eurostat/statistics-

explained/index.php/Government_expenditure_on_general_public_services)general government includes all 

institutional units whose output is intended for individual and collective consumption and mainly financed by 

compulsory payments made by units belonging to other sectors, and/or all institutional units principally engaged in 

the redistribution of national income and wealth. The general government sector is subdivided into four subsectors: 

central government, state government, local government, and social security funds. 

http://ec.europa.eu/eurostat/statistics-explained/index.php/Government_expenditure_on_general_public_services
http://ec.europa.eu/eurostat/statistics-explained/index.php/Government_expenditure_on_general_public_services
https://en.wikipedia.org/wiki/Consumption_%28economics%29
https://en.wikipedia.org/wiki/Income
https://en.wikipedia.org/wiki/Wealth
https://en.wikipedia.org/wiki/Central_government
https://en.wikipedia.org/wiki/State_government
https://en.wikipedia.org/wiki/Local_government
https://en.wikipedia.org/wiki/Social_security
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this paper the nominal GDP is used. However, GDP measure can be replaced by the total 

banking system assets or capital estimations. So, suppose that the threshold q be 10% of the  

nominal GDP. 

Another important issue here is to assign grades to the direct influence values for the 

threshold procedure. In Table 20 we propose the following system of grades which in our 

opinion is reasonable for this case. 

Table 20. Grades for direct influence values 

Grade Condition Description 

7 𝑐𝑖𝑗 = 1 ultimately high influence 

6 0.92 ≤ 𝑐𝑖𝑗 < 1 
very high influence (explanation  similar to the capital 

adequacy ratio for banks, when the loss of more than 0.92% 

of assets will lead to the bank's capital fall below zero) 

5 0.85 ≤ 𝑐𝑖𝑗 < 0.92 
high influence (according to the upper value of the capital 

adequacy ratio standard procedure of Bank of Russia) 

4 0.75 ≤ 𝑐𝑖𝑗 < 0.85 average influence 

3 0.5 ≤ 𝑐𝑖𝑗 < 0.75 moderate influence 

2 0.25 ≤ 𝑐𝑖𝑗 < 0.5 low influence 

1 0 < 𝑐𝑖𝑗 < 0.25 very low influence 

0 𝑐𝑖𝑗 = 0 no influence 

The highest grade corresponds to the highest influence value, the lowest grade indicates 

the absence of influence between elements. 

Thus, we can calculate the influence value of each borrower according to our 

methodology. Table 21 contains a list of countries that were in the TOP-10 by one of LRIC 

indices. Graphical representation of the modeling network shown on Figure 7. We have also 

calculated the Key Borrower Index and compared the results with our methods. 
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Figure 7. A graphical representation of banking foreign claims network 

The countries with the largest value of the index are considered as the most 

pivotal/interconnected ones in the market. All five versions of LRIC (SumPaths, MaxPath, 

MaxMin, Simul, MaxT, MultT) give us almost similar rankings, whereas LRIC based on 

simulations demonstrates some differences. However, the main differences start from the middle 

of the TOP-10 countries. TOP-2 positions are stable according to all methods and occupied by 

the United States of America (USA) and Hong Kong. LRIC index based on simulations also 

groups in the ranking some countries forming regional clusters (Scandinavian, Baltic countries, 

Australia and New Zeeland). 

The results allowed us to obtain two types of countries. 

First of all, the highest ratings are typical for large and strong economies such as USA, 

UK and China. They have developed financial systems with high level of trustworthiness and 

sovereign ratings. As a result, their financial products (banking deposits or securities) attract a 

large number of investors. These results are in the line with findings of (IMF, 2015) and could be 

a good basis for "too big to fail" policy, when financial sectors of these countries could be a 

source of global systemic risk and should be more closely monitored.  
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Table 21. Power of countries as borrowers 

Country KBI 

LRIC indices Rank 

Sum 

Paths 

Max 

Path 
MaxMin Simul MaxT MultT KBI 

Sum

Paths 

Max

Path 
MaxMin Simul MaxT MultT 

United States 0.542 0.083 0.133 0.080 0.540 0.1493 0.1115 1 1 1 1 1 1 1 

Hong Kong SAR 0.051 0.073 0.078 0.052 0.149 0.0924 0.0651 4 2 2 2 2 2 2 

China 0.004 0.061 0.053 0.044 0.004 0.0781 0.0443 19 3 4 3 16 4 4 

United Kingdom 0.090 0.060 0.059 0.040 0.064 0.0694 0.0477 2 4 3 4 3 3 3 

Singapore 0.002 0.040 0.029 0.028 0.004 0.0476 0.0237 25 5 8 6 17 7 7 

Cayman Islands 0.005 0.039 0.042 0.031 0.008 0.0521 0.0326 17 6 5 5 14 5 5 

Brazil 0.006 0.039 0.031 0.025 0.016 0.0310 0.0187 15 7 7 7 9 10 10 

Luxembourg 0.010 0.035 0.026 0.019 0.010 0.0304 0.0214 11 8 9 12 13 8 8 

Poland 0.037 0.033 0.018 0.017 0.003 0.0285 0.0135 6 9 17 16 18 14 14 

Germany 0.037 0.029 0.033 0.022 0.010 0.0382 0.0271 5 10 6 9 12 6 6 

Mexico 0.012 0.0283 0.0251 0.0193 0.041 0.0303 0.0178 10 11 10 10 5 11 11 

Czech Republic 0.029 0.0233 0.0202 0.0191 0.0136 0.0277 0.0160 8 13 14 14 10 13 13 

Japan 0.059 0.0180 0.0237 0.0191 0.043 0.0328 0.0196 3 17 11 11 4 9 9 

Norway 0.005 0.0103 0.0091 0.0075 0.017 0.0107 0.0076 16 28 31 31 8 27 27 

Finland 0.005 0.009 0.009 0.009 0.017 0.0105 0.0073 18 30 32 32 7 29 29 

Denmark 0.009 0.009 0.009 0.008 0.017 0.0099 0.0071 13 31 33 33 6 30 30 

Italy 0.034 0.0166 0.0208 0.0175 0.0124 0.0261 0.0169 7 18 13 13 11 12 12 

Austria 0.024 0.012 0.014 0.015 0.000 0.0194 0.0106 9 26 22 22 54 20 20 
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However, in contrast to the previous works (Aleskerov et al. 2014), we can identify a group of 

countries that are not so large in terms of size of the economy, but also received the highest LRIC 

values. Countries like Hong Kong, Cayman Islands, Singapore and Luxembourg could be good 

examples of "too interconnected to fail" economies. Due to their attractive business environment, 

well-developed infrastructure, human capital and positive reputation, these countries stimulate 

investors place their assets in their financial systems, which makes these countries important 

borrowers. The appearance of these countries in the top ranking does not look normal at first sight, 

but it is in line with our initial hypothesis that the greatest influence must have not only the largest 

market participants, but also the most interconnected ones. In other words, for these countries each 

individual cash flow is not so significant, but their combination can be critical for the stability of the 

financial system as a whole. For example, in the case of the elimination of a country from the 

network, we will most likely not see a chain of cascading failures (because of volumes of interaction 

to each country are not so great), but it will lead to redirecting financial flows on the other countries 

that will affect the overall financial stability. 

In this regard, there is an interesting question about the sensitivity of the results to changes in 

the network structure. According to our estimates, LRIC method allows determining the key elements 

in networks of any configuration, and can also be used to analyze the dynamics of the network 

configuration as well. 

We have also estimated the level of country interconnectedness using a broad range of 

existing centrality measures: weighted degree centrality, closeness centrality, betweenness centrality, 

PageRank and eigenvector centrality. These measures are described in (von Peter, 2007), (Barrat et 

al., 2004) and we follow a very similar logic. More detailed description of the methodology is 

presented in the Section 2.  

The results of the centrality indices calculations are shown in Table 22. 

In order to compare rankings, we used a correlation analysis. Since the position in the ranking 

is a rank variable, to assess the consistency of different orderings other than traditional Pearson 

coefficient rank correlation coefficients should be used. In our work it is applied the idea of Kendall 

metrics (Kendall, 1970), that counts the number of pairwise disagreements between two ranking lists. 

Also we used Goodman and Kruskal γ rank coefficient, which shows the similarity of the orderings 

of the data when ranked by each of the quantities (Goodman, Kruskal, 1954). This coefficient is 

calculated as γ =
NS−ND

NS+ND
, where NS is the number of pairs of cases ranked in the same order on both 

variables (number of concordant pairs) and ND is the number of pairs of cases ranked in reversed 

order on both variables (number of reversed pairs). 

The results are provided below (Tables 22-23). 

https://en.wikipedia.org/wiki/Concordant_pair
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Table 22. Rankings by centrality measures 

Name WInDeg WOutDeg WDeg WDDif Betw Clos PageRank EigenVec 

UnitedStates 1 3 1 198 2 1 1 1 

UnitedKingdom 2 1 2 3 1 2 2 2 

Germany 3 5 5 6 14 58 3 5 

France 4 4 1 2 16 105 4 4 

Japan 6 2 2 1 11 54 5 3 

Netherlands 10 9 5 9 15 151 6 9 

CaymanIslands 5 59 4 197 22 157 7 10 

China 9 61 3 195 24 133 8 14 

HongKong SAR 8 97 9 196 25 125 9 13 

Italy 7 12 13 13 8 79 10 11 

Spain 11 6 15 4 4 158 11 8 

Canada 16 8 14 7 10 61 12 6 

Luxembourg 13 13 10 194 27 48 13 17 

Singapore 14 14 6 192 28 64 14 16 

Brazil 15 15 8 193 29 197 15 19 

Australia 12 11 18 10 3 9 16 12 

Switzerland 17 7 22 5 17 190 17 7 

Poland 19 19 20 188 30 42 19 28 

Mexico 21 21 11 191 33 116 21 24 

CzechRepublic 22 22 7 180 34 70 22 41 

Belgium 24 17 27 174 5 12 24 21 

India 25 27 23 186 6 62 25 22 

Austria 27 16 33 11 9 11 27 25 

Denmark 28 28 17 189 35 108 28 34 

Sweden 32 10 24 8 7 182 29 15 

Norway 29 144 16 185 36 188 30 37 

Finland 30 29 26 183 19 3 33 35 

 

We can see that according to our estimations, the rankings of LRIC indices are highly related 

to the results of the PageRank. This fact is confirmed by both our correlation coefficients (Kendall 𝜏 

and Goodman, Kruskal 𝛾-coefficient). It should be noted that the weighted degree centrality also 

gives us a similar rankings. As for other centrality measures, their correlation coefficients are 

relatively high except the betweenness centrality and weighted out-degree centrality measures for 

which the correlation coefficients is less than 0,5 (Kendall 𝜏) or less than 0,4 (𝛾-coefficient). 

However, although the correlation coefficients of most centralities measures and LRIC 

indices are quite high, it was shown in Table 22 that in contrast to LRIC indices classical centrality 

measures are worse in detecting systemically important countries of the second group (e.g. Cayman 

Island, Luxembourg, Hong Kong). 
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Table 23. Kendall 𝜏-coefficient 

 

WInDeg WOutDeg WDeg WDDif Clos PageRank EigenVec Betw Simul SumPaths MaxPath MaxMin MaxT MultT 

WInDeg - 0.434 0.963 -0.664 0.978 0.984 0.963 0.546 0.735 0.824 0.836 0.864 0.874 0.862 

WOutDeg  - 0.548 -0.354 0.863 0.965 0.976 0.455 0.314 0.812 0.796 0.814 0.822 0.804 

WDeg   - -0.781 0.908 0.987 0.974 0.464 0.911 0.926 0.93 0.918 0.936 0.956 

WDDif    - -0.564 -0.806 -0.794 -0.386 -0.654 -0.698 -0.674 -0.688 -0.656 -0.647 

Clos     - 0.898 0.922 0.483 0.845 0.869 0.87 0.843 0.874 0.865 

PageRank      - 0.951 0.438 0.913 0.937 0.939 0.933 0.952 0.936 

EigenVec       - 0.456 0.869 0.897 0.897 0.866 0.963 0.942 

Betw        - 0.355 0.344 0.359 0.353 0.341 0.325 

Simul         - 0.966 0.967 0.965 0.964 0.955 

SumPaths          - 0.998 0.987 0.96 0.943 

MaxPath           - 0.988 0.985 0.976 

MaxMin            - 0.966 0.959 

MaxT             - 1.000 

MultT             

 

- 

Table 24. Goodman, Kruskal 𝛾-coefficient 

 

WInDeg WOutDeg WDeg WDDif Clos PageRank EigenVec Betw Simul SumPaths MaxPath MaxMin MaxT MultT 

WInDeg - 0.384 0.754 -0.487 0.796 0.753 0.721 0.396 0.587 0.69 0.674 0.687 0.699 0.659 

WOutDeg  - 0.469 -0.304 0.639 0.723 0.705 0.388 0.363 0.735 0.758 0.801 0.814 0.784 

WDeg   - -0.654 0.745 0.903 0.88 0.378 0.73 0.767 0.772 0.743 0.786 0.76 

WDDif    - -0.456 -0.789 -0.628 -0.265 -0.547 -0.523 -0.564 -0.599 -0.503 -0.526 

Clos     - 0.728 0.763 0.397 0.654 0.684 0.684 0.657 0.754 0.798 

PageRank      - 0.828 0.354 0.739 0.791 0.789 0.768 0.789 0.789 

EigenVec       - 0.371 0.673 0.719 0.719 0.681 0.695 0.684 

Betw        - 0.289 0.278 0.291 0.285 0.256 0.289 

Simul         - 0.887 0.887 0.874 0.864 0.876 

SumPaths          - 0.976 0.924 0.915 0.919 

MaxPath           - 0.93 0.925 0.936 

MaxMin            - 0.935 0.928 

MaxT             - 1.000 

MultT             

 

- 
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Conclusion 

Network approach can be applied to different segments of the financial system in order to 

characterize a systemic risk. In our work network models of systemic risk have been applied to a 

specific section of the financial market – international credit market. 

We explore two approaches to measure systemic importance: measurement of long-range 

interactions’ intensities based on paths, and measurement of long-range interactions’ intensities 

based on simulations. This network model aims to help regulators identify the financial elements 

that are too big or too interconnected to fail during any specific crisis. The proposed methodology 

allows to identify countries, which at first sight do not have high level of systemic importance, but 

have a significant impact on the stability of the system as a whole. Also LRIC index based on 

simulations could be a useful instrument for identification of regional financial clusters.  

We carried out estimations for hypothetical examples and presented an empirical analysis of 

cross-border country exposures to demonstrate the feasibility of the proposed methodology. The 

empirical results based on our methodology are in line with the conclusions made by IMF and other 

international financial institutions. In addition, these results draw our attention to the importance of 

countries, which due to their intermediation role in the global finances can have a strong influence 

on the stability of the entire system. 
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Appendix 1. Calculation of centrality measures, Key Borrower Index 

and long-range interaction indices for the Numerical Example 1. 
 

1.1 Calculation of centrality measures 

The calculation of classical centrality measures was performed in R 3.2.2 software package 

with the use of embedded functions (see Table 25). 

Table 25. List of functions for centrality measures (g is an input graph) 

Centrality measure Function 

Weighted In-degree strength(g,mode="in") 

Weighted Out-degree strength(g,mode="out") 

Weighted Degree 

Difference 
strength(g,mode="out")-strength(g,mode="in") 

Weighted Degree strength(g,mode="total") 

Closeness, in closeness(g,mode="in") 

Closeness, out closeness(g,mode="out") 

Betweenness betweenness(g) 

Eigenvector evcent(g, directed=TRUE) 

PageRank page.rank(g, directed=TRUE) 

 

1.2 Calculation of Key Borrower Index 

According to (Aleskerov et al., 2014) we consider each lender separately, calculate the 

influence of each borrower to the particular lender and aggregate the results over all lenders with 

respect to the size of the loans. For example, the lender 1 gave $1000 ($500+$100+$400), total sum 

of money which was borrowed in the system is equal to $3660 ($1000+$200+ 

+$150+$60+$1100+$850+$150), so the lender 1 weight is equal to 0.27 

Table 26. Key Borrower Index for Numerical Example 1 

Lenders 
Key Borrower Index 

Weight 
1 2 3 4 5 6 7 8 9 10 

L=1 0 0.556 0 0 0.444 0 0 0 0 0 0.27 

L=2 0 0 0 0 0 0.654 0 0 0.346 0 0.05 

L=3 0 0 0 0 0 1 0 0 0 0 0.04 

L=4 0 0 0 0 0 1 0 0 0 0 0.02 

L=5 0 0 0 0 0 0.875 0.063 0.063 0 0 0.30 

L=7 0 0 0 0 0 0 0 0 0.706 0.294 0.27 

L=8 0 0 0 0 0 0 0 0 0 1 0.04 

Total  0 0.152 0 0 0.121 0.356 0.019 0.019 0.212 0.121  
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1.3 Calculation of Long-Range Interaction Centrality indices 

For Numerical Example 1 we consider all possible groups of borrowers of size less or equal 

to 5 while the parameter s that defines how many “layers” are examined for each lender is 

undefined. 

Long-Range Interaction Centrality indices based on paths 

Firstly, let us construct a matrix 𝐶 = [𝑐𝑖𝑗] for threshold value q=25% according to Section 

3.1. The corresponding network is shown on Figure 8. 

 

Figure 8. The network for matrix C 

The matrix C is used to evaluate the long-range influence between elements of the system. 

To do it, several methods of indirect influence evaluation was proposed. Thus, for each method we 

can construct the matrix 𝐶∗ which represents the influence and is used for the aggregation of 

influences into a single vector with respect to the weights. For the Numerical Example 1 the matrix 

𝐶∗ is the same for all methods. The results are provided in Table 27. 
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Table 27. Matrix 𝐶∗ for the Numerical Example 1 (paths) 

 1 2 3 4 5 6 7 8 9 10 Weights 

1 0 1 0 0 1 1 0.5 0.5 1 0.5 0.27 

2 0 0 0 0 0 1 0 0 1 0 0.05 

3 0 0 0 0 0 1 0 0 0 0 0.04 

4 0 0 0 0 0 1 0 0 0 0 0.02 

5 0 0 0 0 0 1 0.5 0.5 0.5 0.5 0.30 

6 0 0 0 0 0 0 0 0 0 0 0.00 

7 0 0 0 0 0 0 0 0 1 1 0.27 

8 0 0 0 0 0 0 0 0 0 1 0.04 

9 0 0 0 0 0 0 0 0 0 0 0.00 

10 0 0 0 0 0 0 0 0 0 0 0.00 

Total 0.00 0.27 0.00 0.00 0.27 0.69 0.29 0.29 0.75 0.60 

 Total 

(normalized) 
0 0.09 0 0 0.09 0.22 0.09 0.09 0.23 0.19 

 

Long-Range Interaction Centrality indices based on simulations 

Firstly, let us construct a matrix 𝐶 = [𝑐𝑖𝑗] for threshold value q=25% according to the 

Section 3.2. A graphical representation of the matrix is shown on Figure 9. 

 

Figure 9. The network for matrix C 

The matrix C is used to evaluate the long-range influence between elements of the system 

based on the idea of simulations. To do it, 5000 possible combinations of borrowers were 

considered to construct a new matrix 𝐶∗. Thus, for each method the matrix 𝐶∗(𝑠) = [𝑐𝑖𝑗
∗ (𝑠)], which 

shows in what percentage of cases the borrower i could not return its loans if we assume that the 
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borrower j is not capable to return his own loans, was constructed. The results can be aggregated 

into a single vector with respect to the weights (see Table 28). 

Table 28. Matrix 𝐶∗ for the Numerical Example 1 (simulations) 

 1 2 3 4 5 6 7 8 9 10 Weights 

1 0 1 0 0 1 1 0.4 0.2 1 1 0.27 

2 0 0 0 0 0 1 0 0 1 0 0.05 

3 0 0 0 0 0 1 0 0 0 0 0.04 

4 0 0 0 0 0 1 0 0 0 0 0.02 

5 0 0 0 0 0 1 0.4 0.58 0.47 1 0.30 

6 0 0 0 0 0 0 0 0 0 0 0.00 

7 0 0 0 0 0 0 0 0 1 1 0.27 

8 0 0 0 0 0 0 0 0 0 1 0.04 

9 0 0 0 0 0 0 0 0 0 0 0.00 

10 0 0 0 0 0 0 0 0 0 0 0.00 

Total 0 0.27 0 0 0.27 0.69 0.23 0.23 0.74 0.89 

 Total 

(normalized) 
0 0.085 0 0 0.085 0.211 0.072 0.071 0.216 0.261 
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Аppendix 2. Calculation of centrality measures and Key Borrower 

Index for Numerical Example 2. 
 

2.1 Calculation of centrality measures 

The calculation of classical centrality measures for the Numerical Example 2 was performed 

in R 3.2.2 software package as it was done for Numerical Example 1 (see Appendix 1). 

2.2 Calculation of Key Borrower Index 

According to (Aleskerov et al., 2014) we consider each lender separately, calculate the 

influence of each borrower to the particular lender and aggregate the results over all lenders with 

respect to the size of the loans. For example, the lender 1 gave $100 ($60+$16+$24), total sum of 

money which was borrowed in the system is equal to $900 ($100+$100+$100+$100+ 

+$100+$100+$100+$100+$100), so the lender 1 weight is equal to 0.11 

Table 29.Key Borrower Index for Numerical Example 2 

Lenders 
Key Borrower Index 

Weight 
1 2 3 4 5 6 7 8 9 10 11 

L=1 0 0.82 0.05 0.13 0 0 0 0 0 0 0 0.11 

L=2 0 0 0 0 0.02 0.90 0 0.08 0 0 0 0.11 

L=3 0 0.08 0 0.84 0.08 0 0 0 0 0 0 0.11 

L=4 0 0 0 0 0.03 0 0.89 0 0.08 0 0 0.11 

L=6 0 0 0 0 0 0 0 0 0 0 1 0.11 

L=7 0 0 0 0 0 0 0 0 0 0 1 0.11 

L=8 0 0 0 0 0 0 0 0 0 0 1 0.11 

L=9 0 0 0 0 0 0 0 0 0 0 1 0.11 

L=10 1 0 0 0 0 0 0 0 0 0 0 0.11 

Total 0.11 0.10 0.01 0.11 0.01 0.10 0.10 0.01 0.01 0.00 0.44  
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